19 March 2021 Marc Salit, JIMB Director SLAC National Lab

Stanford University

Standards to support Genomic Surveillance

Jack Collins Frederick National Lab (sponsored by NCI)

Coronavirus Standards Working Group

What should a Coronavirus Standards Working Group do?

Assure development and availability of standards, controls, interlab testing, knowledge to support successful rollout & scaling of 2019-nCoV testing

Identify and develop critical infrastructure to support... confidence in test results interoperability scale-up long-term capacity

Identify best practices that should be institutionalized Learn what we need to so next time we have a global network in place ready to make standards.

Agenda

Standards to support genomic surveillance

Updates

Jack Collins

Updates

Viral RNA Standards Harmonization Study

- Zeptometrix samples found in our freezer
- Zeptometrix samples shipped, panels now complete
- Panel to Slovenia lost; reshipment on Monday

Serology Standards Harmonization Study

- Neil Almond of NIBSC presenting next week
- Working with May Chu and team at Colorado School of Public Health Anschutz Medical Center on study development
- Coordinating with Ligia Pinto and Troy Kemp of Frederick National Lab (leaders of SeroNet project)

Zeptometrix sample now included in panel

Timeline for results

April 9

Jack Collins, FNL

Standards for SARS-CoV-2 Genomic Surveillance

What can we do to support community to understand & report sequencing data quality?

What can we do to be confident in genomic surveillance?

Shared, widely available genome reference samples	Authoritative Characterization	Open Data	Reference Pipeline	Benchmarking Tool
 Establish a library of reference samples representing strains of interest use strain library from BEI 	 Integrate results from multiple sequencing platforms distinguish between variation and sequencing artifacts 	 Make available raw data from characterization multiple technologies data support methods development 	 Make available full analysis for characterization offer prototype analysis pipeline for field use 	 Enable field use of reference samples to evaluate performance of wet lab dry lab

Deliver technology-agnostic standards for Wet Lab -> Dry Lab -> Public Health

Standards like these enable...

Transparent knowledge of method performance

 labs can know what to expect

Optimization

 labs can balance cost, quality, speed

Interoperability

• data can be shared, aggregated, and compared

Consistency of data in public repositories

 repositories can be of known quality

Public health decisionmaking

 based on trustworthy objective data Model for enduring approach for what comes next

 institutionalize exemplar capability

Sequence on multiple platforms

Distinguish between sequencing artifacts and variants in the DNA

What can we do to support community to understand & report sequencing data quality?

What can we do to be confident in genomic surveillance?

Shared, widely available genome reference samples	Authoritative Characterization	Open Data	Reference Pipeline	Benchmarking Tool
 Establish a library of reference samples representing strains of interest use strain library from BEI 	 Integrate results from multiple sequencing platforms distinguish between variation and sequencing artifacts 	 Make available raw data from characterization multiple technologies data support methods development 	 Make available full analysis for characterization offer prototype analysis pipeline for field use 	 Enable field use of reference samples to evaluate performance of wet lab dry lab

Deliver technology-agnostic standards for Wet Lab -> Dry Lab -> Public Health

Discussion