21 May 2021 Marc Salit, JIMB Director

SLAC National Lab Stanford University

Standards Architecture of the Genomic Surveillance Enterprise

Marc Salit, JIMB

Coronavirus Standards Working Group

What should a Coronavirus Standards Working Group do?

Assure development and availability of standards, controls, interlab testing, knowledge to support successful rollout & scaling of 2019-nCoV testing

Identify and develop critical infrastructure to support... confidence in test results interoperability scale-up long-term capacity

Identify best practices that should be institutionalized Learn what we need to so next time we have a global network in place ready to make standards.

Agenda

Updates

• Viral RNA Harmonization

Standards Architecture

 Project with Rockefeller Foundation

CSWG Viral RNA Harmonization Study Status

	NIST	NML/LGC	NIB (Slovenia)	Bio-Rad	Western	MUSC	Мауо	Labcorp	Quest	Biogazelle	MassCPR Diagnostics	Stanford Medicine	Los Alamos	biodesix
Panel Received			\checkmark	\checkmark		\checkmark		\checkmark				\checkmark		
Lab Metadata Entry Initiated	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark							
Lab Metadata Entry Complete	\checkmark						\checkmark		\checkmark			\checkmark		
Lab Data Received	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Data Summarized	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Data Analyzed	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Viral RNA Harmonization Study Data

- Data in from 12/14 labs
- Analysis tool being debugged
 - some artifacts in calculations for a few sites
- Need to compute value assignments with uncertainties
- Developing calibration selection capability

Viral RNA Harmonization Analysis https://msalit.shinyapps.io/RNAstudy/

• <u>Shiny Web App to Analyze</u> <u>Study Data</u>

Genomic Surveillance of SARS-CoV-2

- Genomic epidemiology is at present disaggregated and artisanal
- Hybrid of public health entities, academic groups and centers, government agencies, commercial laboratory systems, informal and formal networks
- Can we do better by laying groundwork for enterprise-scale systematics?
 - consistency
 - reliability
 - transparency
 - interoperability

Nextgen Sequencing "Enterprise" standards can play a role to develop confidence throughout...

NGS is a new kind of assay, and there's lots of room to establish confidence in results.

- Regulatory oversight can foster confident use of NGS in cancer detection and diagnosis.
- "...a standards-based approach to analytical performance of NGS tests and the use of centralized curated databases containing up-to-date evidence to support clinical performance are under discussion."

FDA workshop, Feb 20, 2015

PERSPECTIVE

past decade and of scientific activ clinical trials to mentation. Centr is an understand basic science di ments in clinica

robust mechanis and efficacy of po

therapeutics-sou approved for hur are myriad new

from cutting-edg ics-based diagno ing techniques,

biological materi

and regulators ne nological tools an advances to evalu generation med science" refers to fundamental kno

ing regulatory de science is like all

phasis on hypoth

mentation, but it answers are of pa ulatory decisions

food, veterinary devices, and med In the United

Drug Administra nized the impor

for its mission. A

Penartment of Gen CA 94305, USA. 2Dep Schools of Engi

University, Stanford, Bioengineering and Pharmacy and Media Francisco, San Franci

Measurement Labor dards and Technoloc nstitute for Huma San Francisco. San Fr

*Corresponding auth

REGULATORY SCIENCE

Unmet needs:

Research helps regulators do their jobs

Russ B. Altman,¹ Natalia Khuri,^{2,3} Marc Salit,^{2,4} Kathleen M. Giacomini^{3,5*}

A plethora of innovative new medical products along with the need to apply modern

echnologies to medical-product evaluation has spurred seminal opportunities in regu-(at Georgetown University, Johns Hopkin latory sciences. Here, we provide eight examples of regulatory science research for d verse products, Opportunities abound, par Table 2. NGS: Diagnostic enterprise from clinical sample through diagnosis, reporting, and data archival. Shown is (i) suggested evidence

appropriate for the development of validation standards, which could then be used to establish that evidence, and (ii) critical stake be convened to identify existing standards, create new standards, or establish the research agenda that would underpin the needed standards. VCF, emerged as a critical research theme over the

cal Path Institute-have provided funding or

developed programs specifically directed at

research and training in regulatory sciences. FDA initiated a new program that provides

funds to academic institutions for the build

ing of Centers of Excellence in Regulatory Science and Innovation (CERSI) and has

thus far made four awards, including three

in the vicinity of FDA's White Oak campus

encompasses the spectrum ties from basic discovery to	Phase	Evidence needed	Standards and evidence-developing practices (examples)	Stakeholders for standards development	Knowledge gaps (examples)	
trategies for clinical imple- al to translational medicine ing of the path that moves scoveries toward improve l practice, which includes	Preanalytical: from tissue to DNA	Representative sampling Accurate (unbiased) extraction Integrity of DNA	Documentary standard to establish SOPs for sampling Reference samples and interlabora- tory studies to evaluate extraction and DNA integrity	Clinical laboratories Professional societies Clinical SDOs	 Artifacts associated with extraction from archival tiss samples 	
ns for evaluating the safety tential new diagnostics and me of which are ultimately aan use. Under developmeni ealth care products derivec ge science, such as genom- stics, interventional imag- combination devices with	Sequencing: from DNA to raw sequence data "Wet bench"	Accurate (unbiased) sequencing Fit-for-purpose character- istics	Well-characterized genomic DNA reference materials Documentary standard describing sequencing characteristics appropri- ate for different clinical indications	Standards laboratories Clinical laboratories Sequencing technology developers Academic laboratories developing methods Genome centers	Sequencing of "difficult" regions of the genome Platform artifacts High-quality benchmark genomes Performance expectations (sensitivity, specificity thresh olds)	
ls, and cell-based therapies eed to apply modern tech- d make full use of scientific ate the benefits and risks of cal products. "Regulatory investigations that generate wledge necessary for driv cision-making, Regulatory	Sequence bioinformatics: from raw sequence data to VCF "Dry bench"	Unbiased processing of sequence data (mapping and assembly) Accurate variant calling Accurate and unambigu- ous variant representa- tion Interoperability of data representation	Documentary standards describ- ing protocols to critically evaluate processes, coupled to knowledge of technical platform idiosyncrasies Data representation standards Reference data, implementation: benchmark VCF files Reference software to evaluate VCF files	Standards laboratories Clinical laboratories Sequencing technology developers Academic laboratories developing methods Genome centers	Assembly and mapping in "c ficult" regions of the genom Platform and algorithm artifacts High-quality benchmark genomes Performance expectations (sensitivity, specificity thresh olds)	
scientific research in its em- esis generation and experi- focuses on questions whose ritcular importance for reg- , including those related to roducts, drugs, diagnostics ical software. States, the U.S. Food and	Functional variant annotation	 Accuracy of variant annotation, including establishing confidence in genomic landscape of the call 	- Documentary standards for critical evaluation of processes, coupled to knowledge of technical platform idiosyncrasies Data representation standards Interlaboratory comparisons of annotation Gold standard annotation of bench- mark samples	Clinical laboratories Academic laboratories developing methods Genome centers	Development of genome- wide 'gold standard' annota tions	
ttion (FDA) has long recog tance of regulatory science 2007 study of the FDA Sci- tics, Stanford University, Stanford, artment of Bioengineering, and Medicine Stanford	Clinical variant knowledge base (PharmGKB, ClinVar)	Clinical scope, reliabil- ity, relevance, strength, applicability of data in knowledge base	Documentary standards of evidence for inclusion in knowledge base Documentary standards for critical evaluation of knowledge base contents, formatting, transaction accuracy Knowledge base intercomparisons	Clinicians Professional societies Academic laboratories	Quantitative frameworks to assess knowledge of the strengths of associations of variants and disease Quantitative framework to assess knowledge base curation/accuracy	
A 94305, USA. ³ Department of herapeutic Sciences, Schools of ne, University of California San co, CA 94143-2911, USA. ⁴ Materia tory, National Institute of Stan- (, Gaithersburg, MD 20899, USA. senetics, University of California	Clinical interpreta- tion	Accurate interpretation of variants, including incidental findings and classification of patho- genicity Accurate clinical findings	Documentary standards describing best practices and methods of criti- cal evaluation Adjudicated benchmark case studies for interlaboratory comparisons of clinical interpretation	Clinicians Professional societies Academic laboratories Payers	Quantitative framework to predict performance of clini cal interpretation	
ıncisco, CA 94143, USA. r. E-mail: kathy.giacomini@ucsf.edu	Reporting	Accurate and clear reporting of results to clinician in a standard format	Documentary standards describing reporting guidelines Interlaboratory comparisons and evaluations of reporting	Professional societies Clinicians Genetic counselors Clinical laboratories Payers	Communicate confidence in findings	
	EHR archival	Accurate and interoper- able representation of WGS, WES test results	Data representation standards Documentary standards describing data representation Compliance test software to evalu- ate EHR formatting Reference implementations	Payers Professional societies HHS Standards bodies	No interoperable EHR stan- dards in common practice	

www.ScienceTranslationalMedicine.org 25 November 2015 Vol 7 Issue 315 315ps22 4

in "dif

nome

nota

ice in

Science Translational Medicine 25 Nov 2015: Vol. 7, Issue 315, pp. 315ps22

Standards Architecture

- Evidence to be developed
 - what sort of evidence do you need to establish the veracity of this process phase?
- Standards/Evidence Developing Practices
 - what sort of standards and practices help develop the evidence?
 - standardized!
 - comparable, transparent, evaluable

- Example Stakeholders
 - who cares about this phase, who's can help to establish standards?

- Example Knowledge Gaps
 - what are some of the things we don't know how to do?

Actionable Public Health Knowledge

Which strain at which prevalence? What is the geographic spread? Demographic variations? How did transmission occur? Speed of transmission? Vaccine escape? Diagnostic performance? Therapeutic implications?

Genomic Surveillance Workflow can be segmented...

- Note that the process needs to be considered from Samples to "So-what?"
 - must develop actionable Public Health Knowledge

Annotated genomic surveillance workflow

- This is our working draft, we're in process of consultations
- Open, public workshops 10-15 June
- Strawperson proposal distributed in advance
- 4 working groups, followed by synthesis plenary
- Will issue consensus report with prioritized standards projects

Architecture Table in development

Functional requirements	Key Questions	Standards, Interoperability Tools, Quality Tools	Who will make the Standards?	Existing Standards & Shared Resources
Sampling Strategy				
Sample processing and Sequencing				
Sequence Bioinformatics				
Data aggregation, integration, access				
Public Health Analytics				