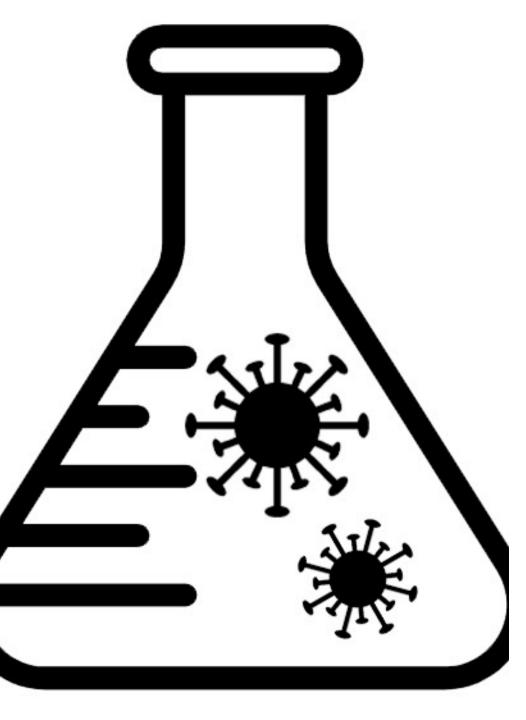
9 July 2021 Marc Salit, JIMB Director SLAC National Lab

Stanford University

Harmonization Study Data Review Update & Roadmap Manuscript

Tim Mercer and Marc Salit Coronavirus Standards Working Group What should a Coronavirus Standards Working Group do?


Assure development and availability of standards, controls, interlab testing, knowledge to support successful rollout & scaling of 2019-nCoV testing

Identify and develop critical infrastructure to support... confidence in test results interoperability scale-up long-term capacity

Identify best practices that should be institutionalized Learn what we need to so next time we have a global network in place ready to make standards.

Agenda

Harmonization Study Results

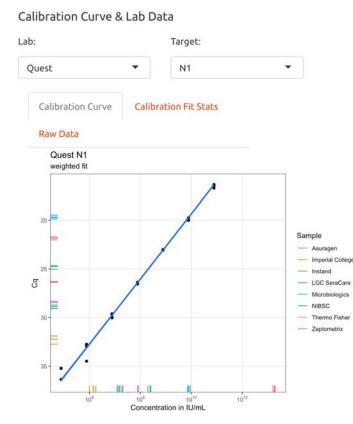
- Value Assignment
- Consistency
- Plan to publish

Roadmap Manuscript

- Outline
- Recommendations
- Plan to publish

Viral RNA Harmonization Study Dashboard Complete!

- Data in from 14/14 labs
- Analysis Dashboard refined
- Unitage resolved
- Preliminary value assignment
- Need to review anomalies, establish takeaways, develop manuscript


CSWG Viral RNA Harmonization Study Status

	NIST	NML/LGC	NIB (Slovenia)	Bio-Rad	Western	MUSC	Мауо	Labcorp	Quest	Biogazelle	MassCPR Diagnostics	Stanford Medicine	Los Alamos	biodesix
Panel Received								\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
Lab Metadata Entry Initiated	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\sim	\checkmark
Lab Metadata Entry Complete												\checkmark		
Lab Data Received	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark
Data Summarized	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Data Analyzed	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

Harmonization Dashboard Updates

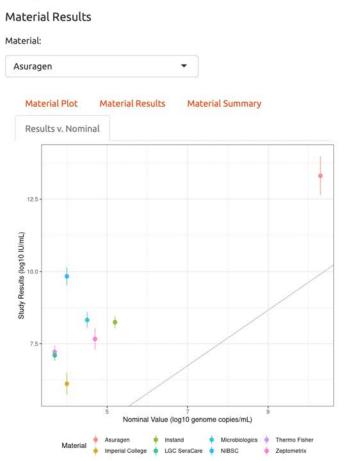
- added data tables for calibration panel
 - calibration results
 - all raw data
- added material summary tab
 - robust "value assignment" estimates
- fixed unitage
- fixed 2x dilution problem with International Standard value

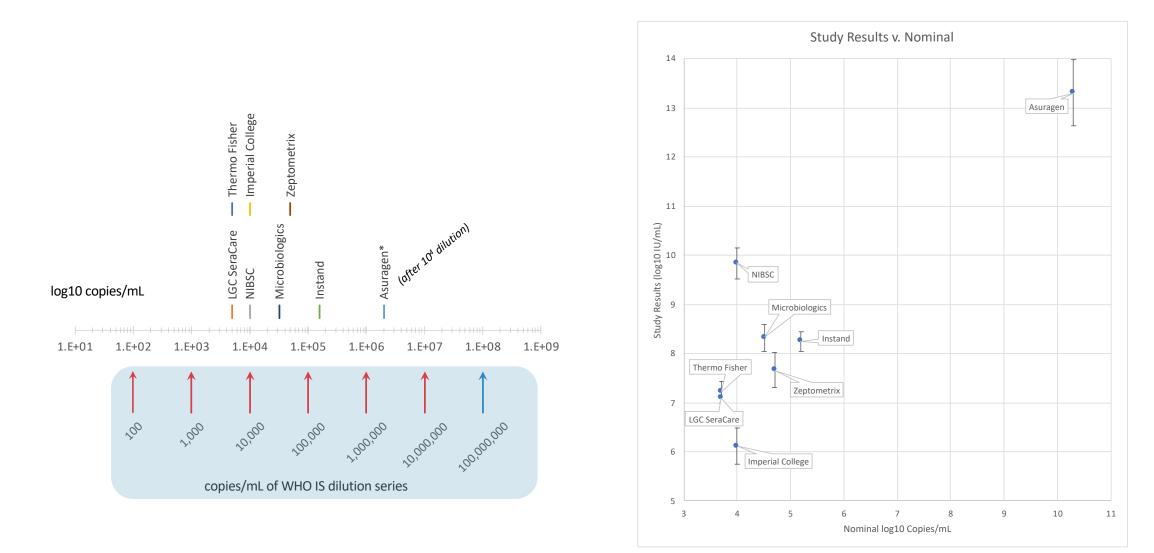
CSWG RNA Harmonization Study -- preliminary results

Material Results Material: Imperial College Material Plot Material Results Material Summary Search:

Median log10 IU/mL Values & 95% CI


	Material 🕴	Median log10 IU/mL 🕴	95% CI
1	Asuragen	13.31	0.671
2	Imperial College	6.111	0.373
3	Instand	8.245	0.206
4	LGC SeraCare	7.098	0.188
5	Microbiologics	8.32	0.274
6	NIBSC	9.836	0.31
7	Thermo Fisher	7.216	0.225
8	Zeptometrix	7.663	0.363


Showing 1 to 8 of 8 entries


Comparison to nominal values

- added tab with graph of log results v. log nominal
- line has slope 7.7/8, intercept = 0

CSWG RNA Harmonization Study -- preliminary results

Nominal material values and study results

Conversion from copies/mL to IU/mL

Medicines & Healthcare products Regulatory Agency

WHO/BS/2020.2402 ENGLISH ONLY

EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION Geneva, 9 - 10 December 2020

WHO International Standard First WHO International Standard for SARS-CoV-2 RNA NIBSC code: 20/146 Instructions for use (Version 2.0, Dated 05/01/2021)

3. UNITAGE

The assigned potency of the WHO International Standard for SARS-CoV-2 RNA for NAT-based assays is 7.40 Log10 IU/ampoule. After reconstitution in 0.5mL of molecular grade water or PBS, the final concentration of the preparation is 7.70 Log10 IU/mL.

Collaborative Study for the Establishment of a WHO International Standard for SARS-CoV-2 RNA

Emma Bentley¹, Edward T. Mee¹, Stephanie Routley¹, Ryan Mate², Martin Fritzsche², Matthew Hurley³, Yann Le Duff³, Rob Anderson³, Jason Hockley⁴, Peter Rigsby⁴, Mark Page¹, Nicola Rose¹, Giada Mattiuzzo^{1#} and the Collaborative Study Group^{*}

was detected. The inactivation procedure was approved by the NIBSC Biological Safety committee.

To prepare the bulk material, quantification of the SARS-CoV-2 genome copies within the inactivated material was determined relative to a plasmid standard curve by in-house real-time RT-PCR using primer/probe targeting the E-gene [9]. The material was prepared to contain 1×10^8 genomes per mL and as with the chimeric LVP, was formulated in universal buffer containing a background of 1×10^5 copies/mL of human genomic DNA.

Next steps on Viral RNA Harmonization Study

review anomalies

~~~

identify trends in results

extraction effects from different labs?



develop key conclusions and takeaways



disseminate values

suggest preprint publication



plan to publish manuscript

build a team to developneed a lead to do Methods section

Tim and Marc's recent review is on the cover of this month's *Nature Reviews Genetics* 

 bringing the band back together again to lead development of the CSWG Roadmap paper July 2021 volume 22 no. 7 www.nature.com/nrg

### nature reviews genetics



COVID-19 TESTING The principles of SARS-CoV-2 surveillance at population scale Developmental trajectories Combining single-cell omics with statistical mechanics analyses

"A roadmap to better COVID-19 testing from the Coronavirus Standards Working Group"

### Introduction

### **Standards needed for COVID-19 testing**

- Reference materials
- Proficiency testing schemes
- Information standards
- Are we missing anything?
- Stories, studies, findings specific to COVID-19 pandemic.

### The COVID-19 testing process.

- Molecular testing
- Antigen testing
- Serology testing
- What standards are needed used to measure vaccine performance, immune protection in population? needed for safe recovery

### Genome surveillance

- What standards are needed for genome surveillance of SARS-
- Foresee new standards for the future?

### Concluding recommendations.

- What did we get right? What did we get wrong?
- What can we improve testing/standards now? In the future? The next pandemic?
- We want bold, fair and thoughtful recommendations.

## Develop consensus on draft recommendations

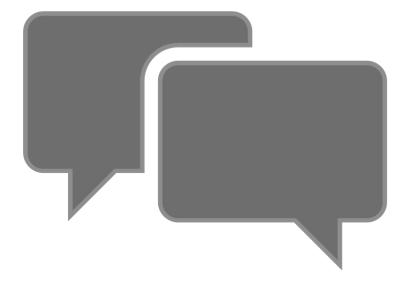
#### Materials

- bring attention to developing standards that underpin *reliability of tests*
- "X-Prize for Pandemic Pathogen Standards"
- scalable distribution of widely-available calibration materials, controls, and standards of *trusted* quality
- rapid studies to establish traceability to International Unit
- recommend EUA for Standards
- EUAs for Tests should be comparable by using comparable standards to calibrate

#### **Proficiency Tests/EQA**

- establish/identify coordinating body for EQA schemes
- recommend ongoing demonstration of EUA test comparability with EQA
- address limitation of EUA by demonstrating field performance of authorized tests

#### **Minimum Information Standards**


- about a control standardize information on how to use this control accurately
- about a test standardize information about a test and how to use and interpret results accurately

Develop consensus recommendations

- Scalable distribution of widely-available calibration materials, controls, and standards for tests
  - oversight/evaluation/authorization of these standards
    - this could be an "EUA" for standards
  - calibration of these standards against the International Standard when it becomes available from WHO
- EUAs for tests should be calibrated with standards that have a provenance
  - standards that can be compared across EUAs
  - this would be a way to make EUAs comparable

# Next steps

| Timeline                          | <ul> <li>share draft today</li> <li>contributions by 26 July</li> </ul> |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
|                                   |                                                                         |  |  |  |  |  |  |
| Protocol for<br>contributions     | <ul><li>shared Word Doc</li><li>shared Google Doc</li></ul>             |  |  |  |  |  |  |
|                                   |                                                                         |  |  |  |  |  |  |
| Google sheet<br>for<br>authorship | <ul> <li>Name, Contributions,<br/>Affiliation(s), COI</li> </ul>        |  |  |  |  |  |  |



# Discussion